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An alternative to the boundary element method for external domains is
proposed, whereby the elements are located on the boundary, but the points
of observation are taken inside the boundary. The modification removes the
non-integrable singularities from the domain of integration. It also
provides a simple way of avoiding the ill-conditioning that occurs at
fictitious eigenfrequencies. The off-boundary BEM is applied to scattering
of a plane, time-harmonic, longitudinal wave by a spherical cavity in an
unbounded linearly elastic, isotropic, homogeneous solid. Results obtained
by the off-boundary aporoach are compared with exact results and with
results obtained by the conventional BEM approach. The off-boundary

approach produces excellent rxesults with less effort than the conventional

BEM.
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Introduction

D

This paper is concerned with scattering of time-harmonic waves by
compact inhomogeneities in an elastic solid. In the calculation procedure a
boundary integral equation is solved numerically by the boundary element
method (BEM). An alternative to the usual boundary element method is
employed. The alternative approach is applicable to cavities or fixed
rigid bodies of general shape rocated in linearly elastic, isotropic,
homogeneous solids, but the specific results reported herein are for
spherical cavities. The alternative approach eliminates the cumbersome
singularities associated with the usual approach to BEM, and it also
eliminates the problems encountered at the so called fictitious

eigenfrequencies.

First a brief presentation of the usual approach to solving these
problems using BEM is presented. This section relies heavily on references
to recent works. Then a discussion of common difficulties, including
fictitious eigenfrequencies, is given - again relying heavily on available
references. The fictitious eigenfrequencies coincide with the
eigenfrequencies of a conjugate solid body, shaped like the cavity. For a
sphere the frequency equation is presented and the relevant frequencies have
been computed. Next the alternative BEM approach is described and numerical
results obtained using this procedure on spherical cavities are presented
for cases both near and away from frequencies at which difficulties are
evperienced with th~ usual method. Finally, advantages of the new approach

are summarized.
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Exact analytical solutions for scattering of harmonic waves by
i".‘
5 spherical scatterers have been studied extensively for problems in
Aed
ﬁ‘ acoustics, electromagnetic scattering {[1], and scattering of elastic waves
l..'
Ao [2]-{4]. These exact solutions are useful for a variety of well known
l&g applications. Recently, the exacc solutions for elastodynamic scattering
?ﬂ have been used as benchmarks for developing numerical procedures and
:ﬁ' computer programs for solving scattering problems with more complicated
gw geometries [5]-[8]. These recent applications include both time [9] and
e
iy
rf frequency domain formulations [10].
¥
el
)
o
" Summary of the Usual Approach
w
o3
o 3 -
.2# The scatterer, the incident wave and the scattered field are shown in
, Fig. 1. Note that the surface of the scatterer is denoted by S and the
.
'j' regions inside and outside the scatterer by Di and De’ respectively. The
*g incident field is time-harmonic, but the factor exp(-iwt), where w is the
"
circular frequency, is being omitted.
\ J
s
~!
:F Reference [10] gives a detailed exposition of the way BEM is typically
(4
~ applied to elastodynamic boundary value problems. The description in
A reference {10] is applicable for both cavities and inclusions. For the
v
> present purpose we will confine our interest to cavities, but the new
] approach is also relevant for fixed rigid inclusions.
] |
; In the usual manner, the total displacement field is expressed as the
: sum of the incident and the scattered fields:
™
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u® = u'@ + @ | (1

The integral representation for the total displacement field is based on the
use of the basic singular elastodynamic displacement solution, which may be

written as

Uij(’-"l')"z}a e 51j+lk¥73'i—ia_i_j'er - )
where
r-Ix -yl %
Kk =w/e, . 2= (X +2u)/p (4a,b)
kpy =w/cq ,  ci = p/p (3a,b)

The expression given by Eq.(2) represents the displacement at position x in
the Xy direction due to a unit point load applied at x ~ y in the

xj -direction,
Now let us consider scattering by a cavity whose surface is free of
tractions. By the use of Eq.(2), the integral representation for the total

field may be written as
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1 0 , X € pt (6a)
i) Ty 3 (2 YUy (DES(D+ vy (x) = ,
S u(x) , x e p® (6b)
where
9 g -
T3 &) = - ['* ax_ Ui’y T # ax, i *H ox, Uik] () 7

In Eq.(7), n(y) is the unit outward normal from De.

Equations (6a) and (6b) are called integral representations because the
source points, y, lie on the surface of the scatterer, while the field
points, x, lie either inside or outside S. To-obtain an integral equation,

the field point is also taken to lie on S. The result is

. 1 .
cij(g)uj(§) - £ Tij(§,z)uj(z)dsy +ui(x), xe€85 , (8)
where
lim

Here S(x,e¢) is the part of the surface of the sphere of radius e, contained
in D® and centered at x. The BEM now solves the integral equation (8) by
discretizing S into elements (also called surface patches), assuming a shape

function for u(x) on each element, and numerically evaluating the integrals
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over each surface element. By sequentially moving the point of observation,

KX

X, to lie on each surface element, a set of linear algebraic equations is HE
l

(4
obtained and solved for the surface displacements. Once the surface #¥
displacements are known, they may be substituted into a discretized version o
of equation (6b) to obtain the field at any point in D®. 4
N

.

The principal difficulty associated with the above procedure is that
Tij(g,z) is extremely singular and, in fact, non-integrable, when X=y.
Again, reference [10] gives a detailed exposition of the singularities and

some techniques to circumvent them. Another difficulty typically

.'-' :0‘;!-{..‘ = ’

encountered with this method is the enormous amount of computer time

'I.:

required if the frequency of the harmonic incident wave is high. %E
Convergence at high frequency requires very fine meshes, so the costs of Fh
building‘and solving the set of algebraic equations rises exponentially. i\
Nonetheless, this approach has been successfully applied to a wide variety ;E‘
of scattering problems and is currently increasing in popularity. E:
) |

Discussion of Fictitious Eigenfrequencies ;f

Y

:t:-n.

Still another difficulty associated with the usual BEM approach is that F‘

the solution of the integral equation is non-unique at certain frequencies ;F
[7]. These frequencies coincide with the eigenfrequencies of the interior 8\

problem with boundary conditions of zero displacement (the Dirichlet

1%

problem) [12]. This non-uniqueness is a result of the method of solution
e
only. The physical problem does have a unique solution, hence the term ::f
o
fictitious eigenfrequencies. ;:f
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At these frequencies the boundary integral equations are {ll- b
O
conditioned but some approaches have been suggested to circumvent the L:
g
‘"
difficulties, and obtain numerical solutions [7],[11]-[16]. One of the more af
I:,-
popular approaches [7] involves formulating the BEM equations for both the -
.'
exterior Neumann (zero tractions) and the interior Dirichlet (zero :5
f .q.
displacements) problems. The full set of equations for the exterior Neumann 4
S
problem are then "constrained" by including equations from the interior ﬁi
Dirichlet problem so that a set of overdetermined equations results, and the 'ﬂé
)
least squares method or a similar technique can be applied to obtain t§$
»
fy
solutions. Some of the other schemes first address the non-uniqueness of gd
the integral equation before applying BEM techniques [12]. ;-;
ﬁ
I
. '?J
As noted above, the fictitious eigenfrequencies for the cavity problem Ny
coincide with cthe eigenfrequencies of the corresponding solid body, shaped
like the cavity, but whose external surface is under zero displacement
conditions. For a solid sphere the latter eigenfrequencies can easily be

calculated, and hence we can obtain the fictitious eigenfrequencies for

e
2 o=

.-ll<

scattering by a spherical cavity.

I‘:l.-

<

Figure 2 shows the system of spherical coordinates that will be used. For

L4 4’. r

€

the scattering problem the fields are axially symmetric, and hence we also

"l

consider axially symmetric vibrations of the solid sphere, i.e.,
u¢ = 0. Using the notation of Ref.[3], expressions for the radial and polar
displacements of any mode are written as

o - o+ ) e
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where

Dk ry = nj (k1) - kot i,k (12)
71 g nkL brJae
(1) ry = n(atl)j_(k,r) (13)
€79 (ep n¥T
‘ﬁ)(‘&r) = G (14)
D) ry = (n+l)j _(kor) - keor §_ o (ko) (15)
gy (kp 3nCkp ket 341 (Ep

Here kL and kT are defined by Eqs.(4a) and (5a),

jn( ) are spherical Bessel

ey e

functions or the first kind or order n, Pn(cosﬁ) are Legendre Polynomials of
order n, and Cn and Dn are constants.

The case of spherical symmetry corresponds to n = 0. The component

U(o) then vanishes identically, and Eq.(10) reduces to
P q
sin(k,r)-(k,r)cos(k,r)
U(o) - C k. kL kL2 kL (16)
r o (kLr)
The condition Ugo) = 0 at r = a then yields the frequency equation
tan(kLr) - kLr (17)

The solutions to Eq.(17) are listed in Table I.
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For n » O the conditions Uin) = 0 and Ugn) = 0 at r = a yield two
homogeneous equations for the constants Cn and Dn' The condition that the

determinant of the coefficients must vanish yields the frequency equation in

the form
eé})(kLa)eéé)(kTa) - egé)(kTa)eéi)(kLa) -0 (18)

For a specific value of n, Eq.(18) has an infinite number of roots. For two
values of Poisson’s ratio, v, and for n = 1 and n = 2, the first five roots
are also listed in Table I. It is noted that the first spherically
symmetric mode (n = 0) does not produce the lowest eigenfrequency. At least

four lower eigenfrequencies occur, a2s indicated in Table I.

Alternative to the Usual Approach

Equations (6a) and (6b) are general, they can be used, in principle,
for cavities of any shape. If the point of observation, X, is taken inside
the cavity instead of on the surface of the cavity, then equation (6a) is
applicable. Now the surface of the cavity is discretized and shape
functions for 3(5) over each element are assumed, exactly as before. As
before, we select as many points of observation as there are surface
elements, but now all the observation points are inside the cavity. By this
procedure we again generate a set of linear algebraic equations which can be
solved to give the set of surface displacements exactly as in the usual
approach. In fact the two methods should give the same results. One

advantage is that the integrals are not singular now since x = y for x e pt.
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This technique can also be used to calculate solutions at the
fictitious eigenfrequencies. The set of equations generated by this method
will differ from those generated by the usual method and will yield good
results without the use of the least squares method or the interior
Dirichlet BEM equation. 1In principle the points x can be chosen
arbitrarily, but there are indications that the observation points should
not be selected too far from the surface of the cavity so that the dominance
of the diagonal terms is retained. This method can also be used to easily
generate the additional equations used in a least squares approach, as will

be demonstrated in the next section.

Comparison of Results and Discussion

To verify the results of the alternative method, several cases of plane
longitudinal-waves-incidence on a spherical cavity in an unbounded elastic
solid have been considered. Figure 2 shows the geometry. First a frequency
for which the usual BEM approach yields a solution that can be compared to
an available exact solution, has been considered. The surface displacements
and the backscattered field are shown in Fig. 3 and Fig. 4, respectively.
The solutions by both the alternative and the usual BEM compare well with

the exact solution (exact results borrowed fiom Ref.{5]).

Next a problem where the usual BEM approach fails was considered.
Figures 5-7 show the radial surface displacements as calculated for three

closely spaced non-dimensional frequencies by the same BEM programs as used

for the results of Figs. 3 and 4. These frequencies are all close to the
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first eigenfrequency for v = 0.41 and n = 1 shown in Table I. The exact

solution is not shown in Figs. 5-7, but the results presented in Fig. 5
indicate large changes in the solution obtained by the usual BEM approach
for very minor changes in the non-dimensional frequency, a behavior which is
typical near fictitious eigenfrequencies. The surface displacements for the
same three non-dimensional frequencies as calculated by two modified
approaches are shown in Figures 6 and 7. In Fig. 6 all of the observation
points were moved inside of the cavity; an equal number of observation
points and surface elements were used. In Fig.7 all but one of the
observation points were taken on the surface, at the center of each element.
One additional observation point was taken at the center of the cavity and
was used to generate an overdetermined system of equations which was then
solved using the least squares method. The ag;eement between Figs. 6 and 7

can be further improved by using more elements for the calculations.

The precise location of the observation points inside the cavity is not
critical, but ill-conditioning can result if the points are chosen to lie
too far away from the surface. For all of the cases presented in this paper
using the alternative approach, the distance from the center of the cavity
was 0.%a, and the points were located on iines joining the center of the
elements and the center of the cavity. The surface displacement, 5(5) was
assumed constant over each element. Cases with the observation points
further away from the surface (closer to the center) have also been
successfully worked out, but the limits of the approach have not been

tested.
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Unfortunately the new technique will not work for scattering from
cracks because there is no Di for the observation point to be located in.

For crack problems techniques similar to those in Refs.{10],(16]-[17] are

3
I
¥
!

recommended.
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r Summary and Conclusions
¢
ib ,
? The straightforward alternative to the usual BEM discussed in this
4
? paper eliminates two substantial difficulties typically associated with D
‘ L]
t
o solving wave scattering problems using the BEM. By taking the points of
K~ observation inside of the cavity (or fixed rigid body) and following the
& usual discretization and integration procedures employed in the BEM, both by
- the singularities of the integrands and the difficulties associated with 4
- fictitious eigenfrequencies are eliminated. The precise location of the ’
N N
¢ points inside the cavity is not critical and hence adjustment of their X
{ position to avoid ill-conditioning is possible. There are indications that ;
'
the observation points should not be located too far from the surface of the
p) e
. ¢
- cavity, but the maximum distance that can be tolerated may vary from problem :
. to problem. :i
L)
\!
'\ {
' The alternative procedure produced very satisfactory results when %
. applied to spherical cavities in unbounded elastic media, even when the :
b usual BEM failed to give satisfactory results. s
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Table I: Eigenfrequencies for axially symmetric vibration modes of a solid /
sphere of radius a, with zero displacement conditions at r = a. h X
, v = 0.25 1 2 3 4 5 "
d £
.......................................................................... Fd
kLa 4.493 7.725 10.904 14.066 17.220 N

e R ettt Ry Ry gy St ~
kra 7.782 13.380 18.886 24.363 29.826 _:
S 23
kLa 2.303 3.581 5.345 5.962 7.215 .

n—l ----------------------------------------------------------------------- $,~
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